

Subject: File Organization and Fundamentals of Databases-I

Semester – I

Subject Code: BS-11502

Lectures: 40

Objectives:

The syllabus aims in equipping students with,

1. Understanding data and basic file organization techniques.
2. Learning and practicing data modeling using the entity-relationship model and developing database designs.
3. Understanding the needs of database processing and learn techniques for controlling the consequences of concurrent data access.

Unit 1: File Organization	No. of Lects. 11
---------------------------	------------------

Chapter 1: Introduction to File Organization

- Physical / logical files
- Special characters in files
- Fields & record organization (fixed , variable length)
- Types of file organization(heap, sorted, indexed, hashed)
- Choosing a file organization

Chapter 2: Indexed File Organization

- Overview of indexes
- Types of indexes (dense, sparse, clustered, primary, secondary)
- Tree (multilevel indexes, B+ tree)
- Activity:
 - B+ tree operations

BOS Members:

Prof. Manisha Bharambe (Subject Expert)

MBharambe

Prof. Poonam Ponde (Subject Expert)

Ponde

Ms Febi Byju (Industry Expert)

Febyju

Ms Sneha Shinde-Patil (Alumni)

Sneha

Prof. Ashwini Kulkarni (Chairman)

Ashwini

Prof. Smita Borkar (Internal Faculty)

Smita

Prof. Shubhangi Jagtap (Internal Faculty)

Shubhangi

Unit 2: DBMS & Conceptual Design

**No. of
Lects.=21**

Chapter 3: Introduction to DBMS

4

- Data, Database and Concept of Database Management System(DBMS)
- File system Vs DBMS
- Structure of DBMS
- Users of DBMS
- Advantages of DBMS
- Data models (relational, hierarchical, network)
- Levels of abstraction
- Data independence
- Database Languages(DDL, DML,DCL,TCL)

Chapter 4 :Conceptual Design (Entity-Relationship Model)

15

- E-R Data Model (entities, attributes, entity sets, relations, relationship sets)
- Additional constraints (key constraints, participation constraints)
- Weak and Strong entity
- Aggregation and Generalization
- Conceptual design using E-R (entities Vs attributes, entity Vs relationship, binary Vs ternary)
- Conceptual design for small to large enterprises
- Activity
 - Case study

BOS Members:

Prof. Manisha Bharambe (Subject Expert)

manisha

Prof. Poonam Ponde (Subject Expert)

poonam

Ms Febi Byju (Industry Expert)

febi

Ms Sneha Shinde-Patil (Alumni)

sneha

Prof. Ashwini Kulkarni (Chairman)

ashwini

Prof. Smita Borkar (Internal Faculty)

smita

Prof. Shubhangi Jagtap (Internal Faculty)

shubhangi

Unit 3: Relational Model and Relational Algebra

No. of
Lects.=8

Chapter 5: Relational data model and Algebra

10

- Relations (concepts, definition)
- Relational Model Concepts
(Domain, Attributes, Tuples, Relations)
- Conversion of ER to Relational model
- Integrity constraints (key, referential integrity, general constraints)
- Relational Algebra :
 - Preliminaries
 - Relational Algebra operations(selection, projection, set operation, renaming, joins, division)
- Activity
 - Conversion of E-R to Relational Model
 - Relational Algebra queries

BOS Members:

Prof. Manisha Bharambe (Subject Expert)

Manisha Bharambe

Prof. Poonam Ponde (Subject Expert)

Poonam Ponde

Ms Febi Byju (Industry Expert)

Febi Byju

Ms Sneha Shinde-Patil (Alumni)

Sneha Shinde

Prof. Ashwini Kulkarni (Chairman)

Ashwini Kulkarni

Prof. Smita Borkar (Internal Faculty)

Smita Borkar

Prof. Shubhangi Jagtap (Internal Faculty)

Shubhangi Jagtap

