

Computer Science Paper VI
Theoretical Computer Science
[DESC-III]

Semester: V	Credits: 2	Subject Code: BS52206	Lectures: 36
-------------	------------	-----------------------	--------------

Course Outcomes:


At the end of this course, the learner will be able to:

- Explain the use of automata during language design.
- Demonstrate Chomsky hierarchy.
- Classify the Regular Language, Context Free Language, Context Sensitive Language and Unrestricted Language.
- Construct the Finite Automata, Pushdown Automata and Turing Machine.

Unit 1: Finite Automation	10
<ul style="list-style-type: none">• Introduction: Symbol, Alphabet, String, Prefix & Suffix of Strings, Formal Language, Operations on Languages.• Grammar - Definition and Examples.• Derivation-Reduction - Definition and Examples.• Chomsky Hierarchy.• Deterministic finite Automaton – Definition, DFA as language recognizer, DFA as pattern recognizer.• No- Deterministic finite automaton – Definition and Examples.• NFA with ϵ- transitions Definition and Examples. NFA to DFA conversion & Examples• Finite automaton with output – Mealy and Moore machine, Definition and Examples.• Minimization of DFA (Myhill-Nerode Method), Algorithm & Problem using Table Method.	

Unit 2: Regular Expressions and Languages	8
<ul style="list-style-type: none">• Regular Grammar: Definition.• Left linear and Right Linear Grammar-Definition and Example.• Regular language-Definition and Examples.• Regular Expressions (RE): Definition & Example• Regular Expressions Identities.• Conversion of RE to FA-Examples.• Pumping lemma for regular languages and applications.• Equivalence of FA & Regular Grammar• Construction of regular grammar equivalent to a given DFA.• Construction of a FA from the given right linear grammar	

Board of Studies	Name	Signature
Chairperson (HoD)	Ashwini Kulkarni	

- Closure Properties of regular Languages

Unit 3: Context-Free Grammars and Languages

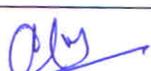
8

- CFG: Definition & Examples. LMD, RMD, Parse Tree
- Ambiguous Grammar: Concept & Examples.
- Simplification of CFG: Removing Useless Symbols, Unit Production, ϵ -production and Nullable Symbol.
- Normal Forms: Greibach Normal Form (GNF) and Chomsky Normal Form (CNF)

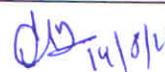
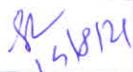
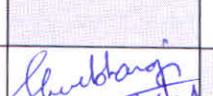
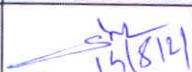
Unit 4: Push Down Automata

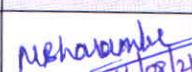
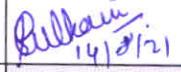
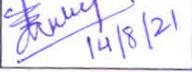
5

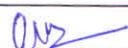
- Definition of PDA and examples.
- Construction of PDA using empty stack and final State method: Examples using stack method.
- Definition DPDA & NPDA, their correlation and Examples of NPDA
- CFG (in GNF) to PDA: Method and examples


Unit 5: Turing Machine

5




- The Turing Machine Model, Definition and Design of TM
- Problems on language recognizers.
- Language accepted by TM.
- Types of Turing Machines (Multitrack TM, Two-way TM, Multitape TM, Non-deterministic TM)
- Introduction to LBA (Basic Model) & CSG. (Without Problems)


Recommended Reference Books:

- Daniel I. A. Cohen, *Introduction to Computer Theory* 2nd edition. John Wiley & Sons; 1996.
- John C. Martin *Introduction to Languages and The Theory of Computation*, Fourth Edition. The McGraw-Hill; 2011.
- John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman *Introduction to Automata Theory, Languages and Computation*, Third Edition. Pearson Education Publication; 2008.
- John E. Hopcroft and Jeffrey Ullman *Introduction to Automata Theory, Languages and Computation*. Narosa Publishing House; 1995.
- K.L.P. Mishra, N. Chandrasekaran *Theory of Computer Science Automata, Languages and Computation*. Publication: Prentice Hall of India; 2008.

Board of Studies	Name	Signature
Chairperson (HoD)	Ashwini Kulkarni	

Board of Studies	Name	Signature(in white cell)
Chairperson (HoD)	Ms Ashwini Kulkarni	14/8/21
Faculty	Ms. Smita Borkar	14/8/21
Faculty	Ms. Shubhangi Jagtap	14/8/21
Subject Expert (Outside SPPU)	Prof. Mr. Aniket Nagne	14/8/21
Subject Expert (Outside SPPU)	Dr. Manisha Divate	14/8/21
VC Nominee	Dr. Manisha Bharambe	14/8/21
Industry Expert	Ms Snehal Biyala	14/8/21
Alumni	Ms. Mamta Choudhary	14/8/21

Board of Studies	Name	Signature
Chairperson	Ms Ashwini Kulkarni	14/8/21