

**Mathematics Practical
Python Programming Language-II
[CORE COURSE]**

Semester: IV Credits: 2 Subject Code: BSP42109 Lectures: 48

Course Outcomes:

At the end of this course, the learner will be able to:

- Illustrate 2D and 3D objects using numpy, matplotlib libraries.
- Illustrate and interpret graphical aspects of two-dimensional and three-dimensional transformation
- Demonstrate the Bezier curve though given points in python.
- Apply Python Programming to solve Linear Programming Problems using graphical method, Simplex method and interpret the solution type.

Practical 1: 2D, 3D Graphs

- Installation of numpy, matplotlib packages
- Graphs plotting of functions such as ... etc.
- Different formats of graphs.
- Three-dimensional Points and Lines
- Three-dimensional Contour Plots
- Wireframes and Surface Plots
- Graphs plotting of functions such as... etc.

Practical 2: Computational Geometry

- **Points:**
 - The distance between two points, Lists of Points - the Point List class, Integer point lists, Ordered Point sets, Extreme Points of a Point List, Random sets of Points not in general position
- **Points:**
 - Displaying Points and other geometrical objects, Lines, rays, and line segments,
 - The geometry of line segments, Displaying lines, rays and line segments

Practical 3: Computational Geometry

- **Polygon**
 - Representing polygons in Python, Triangles, Signed area of a triangle,
 - Triangles and the relationships of points to lines, is Collinear, is Left, is Left On, is Right, is Right On, Between Comparison operators ($>$, $<$, $==$)

Practical 4: Two-dimensional transformation

- Study of Graphical aspects of Two-dimensional transformation matrix using Matplotlib

Practical 5: Three-dimensional transformation

- Study of Graphical aspects of Three-dimensional transformation matrix using Matplotlib

Board Of Studies	Name	Signature
Chairman (HoD)	Gitanjali Phadnis	

Practical 6: Concatenation of 2D and 3D

- Study of effect of concatenation of Two dimensional and Three dimensional Transformations

Practical 7: Bezier Curve

- Generation of Bezier curve using given control points

Practical 8: Study of Operation Research

- Linear Programming in Python

Practical 9: Study of Operation Research

- Introduction to Simplex Method in Python (Canonical Form of LPP)

Recommended Text Books:

- Jaan Kiusalaas, *Numerical Methods in Engineering with Python*, Cambridge
 - Section 3
- Jason Brownlee, *Basics of Linear Algebra for Machine Learning*, Discover the Mathematical Language of Data in Python
 - Section 2
- Robert Johansson, *Introduction to Scientific Computing in Python*
 - Section: 1

Reference Books:

- Guzdial, M. J., *Introduction to Computing and Programming in Python*, Pearson India.
- Jim Arlow, Interactive Computational Geometry in Python
- Lambert K. A., Fundamentals of Python - First Programs, Cengage Learning India, 2015.
- Perkovic, L., Introduction to Computing Using Python, 2/e, John Wiley, 2015.
- Zelle, J., Python Programming: An Introduction to Computer Science, Franklin, Beedle and Associates Inc.

Board Of Studies	Name	Signature
Chairman (HoD)	Gitanjali Phadnis	