

Statistics Paper-II
Continuous probability distributions and testing of hypothesis
[CORE COURSE]

Semester II	Credits:2	Subject Code: BS22006	Lectures : 40
-------------	-----------	-----------------------	---------------

Course Outcomes:

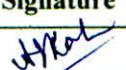
At the end of this course, the learner will be able to:

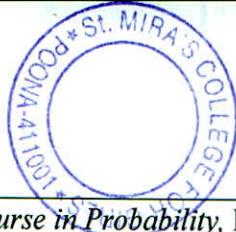
Apply the knowledge of standard continuous probability distributions to solve real life problems by calculating probabilities.

- Apply the concepts and definitions related to testing of hypothesis.
- Perform Test of Hypothesis for a population parameter for single sample and two sample cases. Understand the concept of p-values.
- To generate model sample from given distributions.
- Apply the knowledge of concepts of hypothesis testing, parametric and non-parametric tests in research methodology at higher level studies and applications.

Unit 1: Standard Continuous Probability Distributions	10
<ul style="list-style-type: none">• Uniform Distribution: statement of p.d.f., mean, variance, nature of probability curve. Theorem (without proof): The distribution function of any continuous r.v. if it is invertible follows $U(0, 1)$ distribution• Exponential Distribution: statement of p.d.f. of the form, $f(x) = (1/\theta) e^{-x/\theta}$, mean, variance, nature of probability curve, lack of memory property.(with proof)• Parato distribution: Form of p.d.f. $f(x) = \alpha / x(\alpha+1)$; $x \geq 1$, $\alpha > 0$. Mean, variance, symmetry, applications• Normal Distribution: statement of p.d.f., identification of parameters, nature of probability density curve, standard normal distribution, symmetry, distribution of $aX+b$, $aX+bY+c$ where X and Y are independent normal variables, computations of probabilities using normal probability table, normal approximation to binomial and Poisson distribution, central limit theorem (statement only), normal probability plot. Box Muller transformation.• Numerical problems related to real life situations.	

Unit 2: Concepts and definitions related to testing of hypothesis	4
<ul style="list-style-type: none">• Concepts and definitions related to testing of hypothesis• Definitions: population, statistic, SRSWR, SRSWOR, random sample from a probability distribution, parameter, statistic, standard error of estimator.• Concept of null hypothesis and alternative hypothesis, critical region, level of significance, type I and type II error, one sided and two side dtests, p-value.	


Board of studies	Name	Signature
Chairman(HoD)	Anjali Kale, St. Mira's College for Girls, Pune	


Unit 3: Parametric and Non-parametric Tests	20
<ul style="list-style-type: none"> • Large Sample Tests <ul style="list-style-type: none"> ○ $H_0: \mu = \mu_0$ Vs $H_1: \mu \neq \mu_0$ (two sided tests) ○ $H_0: \mu_1 = \mu_2$ Vs $H_1: \mu_1 \neq \mu_2$ (two sided tests) ○ $H_0: P = P_0$ Vs $H_1: P \neq P_0$ (sided and two sided tests) ○ $H_0: P_1 = P_2$ Vs $H_1: P_1 \neq P_2$ (two sided tests) ○ Test based on F- distribution: F-test for testing significance of equality of two population variances. <ul style="list-style-type: none"> • Tests based on t -distribution: $H_0: \mu_1 = \mu_2$ Vs $H_1: \mu_1 \neq \mu_2, \mu_1 < \mu_2, \mu_1 > \mu_2$ (One sided and two sided tests), Paired t-test. • Tests based on Chi square distribution • Chi-square test for goodness of fit • Test for independence of attributes (mxn and 2x2) • Kolmogorov - Smirnov test • Run test for testing randomness of the sample and sign test for testing symmetry of the sample • Numerical problems related to real life situations. 	

Unit 4: Simulation	06
<ul style="list-style-type: none"> • Introduction, concept of simulation, random numbers, pseudo random numbers, Advantages, Disadvantages of Simulation. Applications • Methods of simulation, Linear congruential generator and simulation from continuous Uniform, Exponential and Normal Distribution. 	

Recommended Text Books:
<ul style="list-style-type: none"> • Gupta S. C. and Kapoor V. K. 1987, <i>Fundamentals of Applied Statistics (3rd Edition)</i> S. Chand and Sons, New Delhi. • Kulkarni M.B., Ghatpande S.B., Gore S.D. 1999, <i>Common Statistical Tests</i>, Satyajeet Prakashan, Pune • Kulkarni M.B., Ghatpande S.B. 2007, <i>Introduction to Discrete Probability and Probability Distributions</i> SIPF Academy • Sarma K.V.S. 2001 <i>Statistics Made Simple. Do it Yourself</i> on P.C. Prentice Hall

Reference Books:
<ul style="list-style-type: none"> • Agarwal B. L., <i>Programmed Statistics</i>, New Age International Publishers. • Freund J.E., <i>Modern Elementary Statistics</i>, Pearson Publication, 2005. • Ghatpande S.B., Gore S.D., Kulkarni M.B., <i>Common Statistical Tests</i> Satyajeet Prakashan, 1999. • Law A. M. and Kelton W.D., <i>Simulation Modeling and Analysis</i>, Tata McGraw Hill, 2007. • Medhi J., <i>Statistical Methods (An Introductory Text)</i>, New Age International, 1992. • Mukhopadhyay P., <i>Mathematical Statistics (3rd Edition)</i>, Books And Allied (P) Ltd., 2015. • Trivedi K.S., <i>Probability, Statistics, Design of Experiments and Queuing Theory with Applications of Computer Science</i>, Prentice Hall of India, New Delhi, 2001.

Board of studies	Name	Signature
Chairman(HoD)	Anjali Kale, St. Mira's College for Girls, Pune	

- Ross Sheldon, *A First course in Probability*, Pearson Education Inc.

Board of studies	Name	Signature (In white cell)
Chairman	Ms. Anjali Kale	<i>Anjali 21/7/20</i>
Faculty	Ms. Amrita Basu	<i>Amrita Basu 21/7/20</i>
Subject Expert (Outside SPPU)	Dr. Sharvari Shukla,	<i>Sharvari 21/7/20</i>
Subject Expert (Outside SPPU)	Dr. Suresh Pathare	<i>Suresh 21/7/20</i>
V.C. Nominee(SPPU)	Dr. Mohan Kale	<i>M. Kale 21/7/20</i>
Industry Expert	Dr. Saikat Roy	<i>Saikat Roy 21/7/20</i>
Alumni	Ms. Anuja	<i>Anuja 21/7/20</i>

Board of studies	Name	Signature
Chairman(HoD)	Anjali Kale, St. Mira's College for Girls, Pune	<i>Anjali 21/7/20</i>