

# M.Sc. Computer Science Syllabus First Year (2018-23)

## Design and Analysis of Algorithms

|            |                       |              |
|------------|-----------------------|--------------|
| Semester I | Subject Code: MS11804 | Lectures: 60 |
|------------|-----------------------|--------------|

### Objectives:

The syllabus aims in equipping students with,

- Basic Algorithm Analysis techniques and understand the use of asymptotic notation
- Understand different design strategies
- Understand the use of data structures in improving algorithm performance
- Understand classical problem and solutions
- Learn a variety of useful algorithms
- Understand classification of problems

|                                                                                                                                                                                                                                                                                                  |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>Unit 1: Analysis</b>                                                                                                                                                                                                                                                                          | <b>6</b> |
| <ul style="list-style-type: none"> <li>• Algorithm definition, space complexity, time complexity, worst case –best case –average case complexity, asymptotic notation</li> <li>• sorting algorithms (insertion sort, heap sort), recursive algorithms (Tower of Hanoi, Permutations).</li> </ul> | 6        |

|                                                                                                                                                                                                                                    |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>Unit 2: Design strategies</b>                                                                                                                                                                                                   | <b>8</b> |
| <ul style="list-style-type: none"> <li>• Divide and conquer-control abstraction, ternary search, Strassen's matrix (2X2)</li> <li>• Transform and conquer:- Horner's Rule and Binary Exponentiation – Problem Reduction</li> </ul> | 4        |
|                                                                                                                                                                                                                                    | 4        |

### BOS Members:

Prof. Seema Chowhan (Subject Expert)

*Seema*  
*JMC*  
*S. J. C.*

Prof. M.B. Lonare (Subject Expert)

*M.B.*

Ms. Shilpa Khadilkar (Subject Expert)

*Shilpa*

Ms. Anuradha Bhamre (Industry Expert)

*Anuradha B.*

Ms Aishwarya Kaliyiluvila (Alumni)

*Aishwarya K.*

Prof. Ashwini Kulkarni (Chairman)

*Ashwini K.*

Prof. Alka Kalhapure (Internal Faculty)

*Alka*

Prof. Swati Pulate (Internal Faculty)

*Swati P.*



**Unit 3: Greedy method****8**

- knapsack problem
- job sequencing with deadlines
- minimum-cost spanning trees
- Kruskal and Prim's algorithm

**Unit 4: Dynamic programming****10**

- Matrix chain multiplication
- single source shortest paths
- Bellman- ford algorithm
- all pairs shortest path
- longest common subsequence
- string editing
- 0/1 knapsack problem
- Traveling salesperson problem.
- Multistage Graphs

**Unit 5: Backtracking****4**

- General method
- 8 Queen's problem
- Sum of subsets problem
- graph coloring problem
- Hamiltonian cycle

**BOS Members:**

Prof. Seema Chowhan (Subject Expert)

*Seema*

Prof. M.B. Lonare (Subject Expert)

*M.B. Lonare*

Ms. Shilpa Khadilkar (Subject Expert)

*Shilpa K*

Ms. Anuradha Bhamre (Industry Expert)

*Anuradha B*

Ms Aishwarya Kaliyiluvila (Alumni)

*Aishwarya K*

Prof. Ashwini Kulkarni (Chairman)

*Ashwini K*

Prof. Alka Kalhapure (Internal Faculty)

*Alka*

Prof. Swati Pulate (Internal Faculty)

*Swati P*

|                                                                                                                                                                                                                                                 |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>Unit 6: Branch and Bound Technique</b>                                                                                                                                                                                                       | <b>4</b> |
| <ul style="list-style-type: none"> <li>• FIFO, LIFO</li> <li>• LCBB</li> <li>• TSP problem</li> <li>• 0/1 knapsack problem</li> </ul>                                                                                                           |          |
| <b>Unit 7: Problem classification</b>                                                                                                                                                                                                           | <b>5</b> |
| <ul style="list-style-type: none"> <li>• Nondeterministic algorithm</li> <li>• The class of P,NP, NP-hard and NP- Complete problems</li> <li>• Significance of Cook's theorem</li> <li>• NCDP,M-chromatic</li> <li>• Halting Problem</li> </ul> |          |

|                                                                                                                                                                |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>Unit 8: Parallel, Concurrent and Distributed Algorithm</b>                                                                                                  | <b>3</b> |
| <ul style="list-style-type: none"> <li>• Parallel Algorithm-Primes</li> <li>• Concurrent Algorithm</li> <li>• Distributed Algorithm-Floyds-Warshall</li> </ul> |          |

**\*Contact hours – 12 hours**

**Reference Books:**

1. Ellis Horowitz, Sartaj Sahni & Sanguthevar Rajasekaran, *Computer Algorithms*, Galgotia.
2. T. Cormen, C. Leiserson, & R. Rivest, *Algorithms*, MIT Press, 1990 1
3. A. Aho, J. Hopcroft, & J. Ullman, *The Design and Analysis of Computer Algorithms*, Addison Wesley, 1974
4. Donald Knuth, *The Art of Computer Programming* (3 vols., various editions, 1973-81), Addison Wesley

**BOS Members:**

Prof. Seema Chowhan (Subject Expert)

*Seema*

Prof. M.B. Lonare (Subject Expert)

*M.B.*

Ms. Shilpa Khadilkar (Subject Expert)

*Shilpa*

Ms Anuradha Bhamre (Industry Expert)

*Anuradha*

Ms Aishwarya Kaliyiluvila (Alumni)

*Aishwarya-K.*

Prof. Ashwini Kulkarni (Chairman)

*Ashwini*

Prof. Alka Kalhapure (Internal Faculty)

*Alka*

Prof. Swati Pulate (Internal Faculty)

*Swati*

